Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat.

نویسندگان

  • H M Oh
  • S J Lee
  • M H Jang
  • B D Yoon
چکیده

The production of microcystins (MC) from Microcystis aeruginosa UTEX 2388 was investigated in a P-limited continuous culture. MC (MC-LR, MC-RR, and MC-YR) from lyophilized M. aeruginosa were extracted with 5% acetic acid, purified by a Sep-Pak C(18) cartridge, and then analyzed by high-performance liquid chromatography with a UV detector and Nucleosil C(18) reverse-phase column. The specific growth rate (mu) of M. aeruginosa was within the range of 0.1 to 0.8/day and was a function of the cellular P content under a P limitation. The N/P atomic ratio of steady-state cells in a P-limited medium varied from 24 to 15 with an increasing mu. The MC-LR and MC-RR contents on a dry weight basis were highest at mu of 0.1/day at 339 and 774 microg g(-1), respectively, while MC-YR was not detected. The MC content of M. aeruginosa was higher at a lower mu, whereas the MC-producing rate was linearly proportional to mu. The C fixation rate at an ambient irradiance (160 microeinsteins m(-2) s(-1)) increased with mu. The ratios of the MC-producing rate to the C fixation rate were higher at a lower mu. Accordingly, the growth of M. aeruginosa was reduced under a P limitation due to a low C fixation rate, whereas the MC content was higher. Consequently, increases in the MC content per dry weight along with the production of the more toxic form, MC-LR, were observed under more P-limited conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship of energy charge and toxin content of Microcystis aeruginosa in nitrogen-limited or phosphorous-limited cultures.

Effects of nitrogen-limitation and phosphorus-limitation on microcystin (MC) content and energy charge (EC) of the Microcystis aeruginosa were investigated in batch cultures and semi-continuous cultures. In batch cultures, nitrogen-limitation retarded the MC synthesis and phosphorus-limitation had little effects on MC production. The EC remained constant in nitrogen-limited cultures, while it d...

متن کامل

Elevated pCO2 causes a shift towards more toxic microcystin variants in nitrogen-limited Microcystis aeruginosa.

Elevated pCO2 may promote phytoplankton growth, and potentially alleviate carbon limitation during dense blooms. Under nitrogen-limited conditions, elevated pCO2 may furthermore alter the phytoplankton carbon-nitrogen (C:N) balance and thereby the synthesis of secondary metabolites, such as cyanobacterial toxins. A common group of these toxins are the microcystins, with variants that differ not...

متن کامل

Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches

Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water...

متن کامل

Global Transcriptional Responses of the Toxic Cyanobacterium, Microcystis aeruginosa, to Nitrogen Stress, Phosphorus Stress, and Growth on Organic Matter

Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the ...

متن کامل

Effect of Temperature and Light Intensity on the Growth, Chlorophyll a Concentration and Microcystin Production by Microcystis Aeruginosa

The cyanoprocaryotes (cyanobacteria) are distributed globally. Their ability to bloom in water is mainly a result of eutrophication of water bodies, the safety of which is connected to the presence of toxin producing algal species (Oliver and Ganf, 2000). Cyanobacteria can produce a broad spectrum of toxins – cyanotoxins EFFECT OF TEMPERATURE AND LIGHT INTENSITY ON THE GROWTH, CHLOROPHYLL A CON...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 66 1  شماره 

صفحات  -

تاریخ انتشار 2000